EN Original instruction

Frequency inverters VT1000 series

Preface

Thank you for choosing VT1000 series of high-performance, simple inverter. Diagram of the operating instructions, is to facilitate the description, may be slightly different with the product.
Please note that this manual will be handed the hands of end users, and retain for future maintenance, use and if in doubt, please contact with our company or agent of the Company to get in touch, we will be happy to serve you.
This appliance is not intended for use by persons (including children) with reduced physical, sensory or mental capabilities, or lack of experience and knowledge unless they have been given supervision or instruction concerning the use of the appliance by a person responsible for their safety. Children should be supervised to ensure that they do not play with the appliance.

Technical data

Selectable V/F, sensorless vector control.
Motor parameter auto-tuning (turning).
150% torque at 0.5 Hz .
$0.1 \sim 400 \mathrm{~Hz}$ frequency output.
$1 \sim 15 \mathrm{kHz}$ carrier frequency.
$0 \sim 10$ VDC analog input.
IP20 enclosure.
Selectable manual/automatic torque boost.
Built-in potentiometer.
Selectable PNP/NPN input signal.
Fault history: last 5 faults.
12. Enhanced process PID control.
13. MODBUS RTU communication.

These products conform with the basic safety requirements of EC directive: 2014/35/EU LVD (low voltage directive), 2014/30/EU EMC (electromagnetic compatibility). The following standards have been applied: EN 61800-3:2004/A1:2012, EN 55011:2009/A1:2010, EN61000-6-2:2005, EN 61800-5-1:2007 and marked with the CE sign.

Nameplate description

MODEL VT 1000-1R5G-2:

INPUT: 1PH 220V 50Hz/60Hz
OUTPUT: 3PH 220V 7.0A 150\%60S
FREQ RANGE:0.1-400 Hz 1.5 kW

1105080001-3051

Dimensions (mm)

Figure 2
Note: Support for standart 35 mm rail mounting.

Keyboard description

Display area:displays:
Set frequency, operating frequency, current, and abnorma
RUN/FWD/REV/STOP: values for each parameter setting content.
Status indicator:
operation status.

Shift/Enter/switch display button: Shift to another digit or switch to another display by shortpressing, confirm a setting by longpressing.

Turn to another frequency by rotating the potentiometer when the frequency is set to be controlled by the manipulator potentiometer
 click stop.
button
Short press for programming key, press 2 seconds for the fault reset button.

Figure 4
Product specification

Items		VT1000
Power supply	Rated voltage, frequency	One-phase/three-phase AC $220 \mathrm{~V} 50 / 60 \mathrm{~Hz}$.
	Voltage range	220V:170V~240V
Output	Voltage range	$220 \mathrm{~V}: 0 \sim 220 \mathrm{~V}$
	Frequency range	$0.10 \sim 400.00 \mathrm{~Hz}$
Control method		V/F control, space vector control.
Indication		Operating status/Alarm definition/interactive guidance:eg, frequency setting, the output frequency/current, DC bus voltage. The temperature and so on.
Control specialations	Output frequency range	$0.10 \mathrm{~Hz} \sim 400.00 \mathrm{~Hz}$
	Frequency setting resolution	Digital input: 0.1 Hz , analog input: 0.1% of maximum output frequency.
	Output frequency accuracy	$0 . \mathrm{Hz}$
	V/F control	Setting V/F curve to satisfy various load requirements.
	Torque control	Auto increase: auto raise torque by loading condition; Manual increase: enable to set $0.0 \sim 20.0 \%$ of raising torque.
	Multifunctional input terminal	Four multi-function input terminals, realizing functions including fifteen section speed control, program running, four-section acceleration/deceleration speed switch, UP/DOWN function and emergency stop and other functions.
	Multifunctional output terminal	1 multi-function output terminals for displaying of running, zero speed, counter, external abnormity, program operation and other information and warnings.
	Acceleration/deceleration time setting	0~999.9s acceleration/ deceleration time can be set individually.
Other functions	PID control	Built-in PID control
	RS485	Standard RS485 communication function (MODBUS)
	Frequency setting	Analog input: 0 to $10 \mathrm{~V}, 4$ to 20 mA can be selected; Digital input:input using the setting dial of the operation panel or RS485 or UP/DOWN. Note: AVI terminals can be used to select an analog voltage input ($0-10 \mathrm{~V}$) and analog current input ($4-20 \mathrm{~mA}$) through the switch J2.
	Multi-speed	Four multifunction input terminals, 15 section speed can be set.
	Automatic voltage regulation	Automatic voltage regulation function can be selected.
	Counter	Built-in 2 group of counters.
Protection/warning function	Overload	150\%, 60second (Constant torque).
	Over voltage	Over voltage protection can be set.
	Under voltage	Under voltage protection can be set.
	Other protections	Output short circuit, over current, and parameter lock and so on.
Environment	Ambient temperature	$-10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ (non-freezing)
	Ambient humidity	Max.95\% (non-condensing)
	Altitude	Lower than 1000m
	Vibration	Max.0.5g
Structure	Cooling mode	Forced air cooling
	Protective structure	IP 20
Installation	Mode	Wall-mounted or standard 35 mm rail mounting

Note: AVI terminals can be used to select an analog voltage input ($0-10 \mathrm{~V}$) and analog current input (4-20mA) through the switch J 2 . Note: When using a single-phase power supply, please access from terminals L1 and L2.

Parameters					
Function	Parameters	Name	Setting range	Minimum setting increments	Initial value
Monitor functions	P000	Main display data selection	0-32	1	1
	P001	Display the set frequency	Read only	-----	-----
	P002	Display the output frequency	Read only	-----	-----
	P003	Display the output current	Read only	-----	-----
	P004	Display the monitor speed	Read only	-----	-----
	P005	Display the DC bus voltage value	Read only	-----	-----
	P006	Display the temperature of inverter	Read only	-----	-----
	P007	Display PID	Read only	-----	-----
	P010	Alarm record 1	Read only	-----	-----
	P011	Alarm record 2	Read only	-----	-----
	P012	Alarm record 3	Read only	-----	-----
	P013	Alarm record 4	Read only	-----	-----
	P014	The frequency setting in the last alarm	Read only	-----	-----
	P015	The output frequency in last alarm	Read only	-----	-----
	P016	The output current in last alarm	Read only	-----	-----
	P017	The output voltage in last alarm	Read only	-----	---
	P018	The output DC bus voltage in last alarm	Read only	-----	----
Basic functions	P100	Digital frequency setting	0.00 - Maximum frequency	0.1	0.0
	P101	Frequency setting selection	0 : Digital frequency setting (P100) 1: Analog voltage (0-10VDC) 2: Analog current (0-20mADC) 3: Setting dial (operation panel) 4: UP/DOWN frequency setting 5:RS485 communication frequency setting	1	3
	P102	Start signal selection	0: Operation panel (FWD/REV/STOP) 1:I/O terminal 2: Communication (RS485)	1	0
	P103	"Stop" key lock operation selection	0: "Stop"key lock mode invalid 1: "Stop" key lock mode valid	1	1
	P104	Reverse rotation prevention selection	0 : Reverse rotation disallowed 1: Reverse rotation allowed	1	1
	P105	Maximum frequency	Minimum frequency $\sim 400.00 \mathrm{~Hz}$	0.1	50.0
	P106	Minimum frequency	0.00~maximum frequency	0.1	0.00
	P107	Acceleration time 1	0~999.9s.	0.1	Depends on models
	P108	Deceleration time 1	0~999.9s.	0.1	

	P324	Reserved	1: In running 2: Frequency reached 3: Alarm 4: Zero speed 5: Frequency 1 reached 6: Frequency 2 reached 7: Acceleration 8: Deceleration 9: Indication for under voltage 10: Timer 1 reached 11: Timer 2 reached 12: Indication for completion of phase 13: Indication for completion of procedure 14: PID maximum 15: PID minimum 16: 4-20mA disconnection 17: Overload 18: Over torque 26: Winding operation completed 27: Counter reached 28: Intermediate counter reached 29: Water supply by constant voltage	1	
	P325	Alarm output terminal RA, RC (0~32)	" 1 "" turn on "0"turn off	1	03
	P326	Reserved	0 : Frequency output	1	
I/O functions	P327	Reserved	2: Dc bus voltage 3: Ac voltage 4: Pulse output, 1pulse/Hz 5: 2pulses/Hz 6: 3 pulses/Hz 7: 6 pulses/H	1	
Secondary application	P400	Jog frequency setting	0.00~maximum frequency	0.1	5.00
	P401	Acceleration time 2	0~999.9s	0.15	10.00
	P402	Deceleration time 2	0~999.9s	0.15	10.00
	P403	Acceleration time 3	0~999.9s	0.15	10.00
	P404	Deceleration time 3	0~999.9s	0.15	10.00
	P405	Acceleration time 4/Jog acceleration time	0~999.9s	0.15	10.00
	P406	Deceleration time 4/Jog acceleration time	0~999.9s	0.15	10.00
	P407	Designated value of counter	0~999.9s	1	100
	P408	Intermediate value of counter	0~999.9s	1	50
	P409	Limitation of acceleration torque	0~200\%	1\%	150\%
	P410	Limitation of constant speed torque	0~200\%	1\%	00
	P411	Over voltage prevention selection in deceleration	0/1	1	1
	P412	Automatic voltage regulation selection	0~2	1	1
	P413	Automatic-energy saving selection	0~100\%	1\%	00
	P414	DC Braking voltage	Depends on models	0.1	Changing
	P415	Braking duty	40~100\%	1	50\%
	P416	Restart after instant power off	0~1	1	0
	P417	Allowable time of power cut	0~10s	1	5.0 S
	P418	Flank restart current limited level	0~200\%	1	150\%
	P419	Flank restart time	$0 \sim 10$ s	1	10
	P420	Fault restart times	0~5s	1	0
	P421	Delay time for restart after fault	0~100	2	2
	P422	Over torque action	0~3	1	0
	P423	Over torque detection level	0~200\%	1	00
	P424	Over torque detection time	0~20.0s	0.1	00
	P425	Reaching frequency 1	$0.00 \sim$ maximum frequency	0.1	100
	P426	Reaching frequency 2	$0.00 \sim$ maximum frequency	0.1	5.0
	P427	Timer 1 setting	$0 \sim 10$ s	0.1	0
	P428	Timer 2 setting	0~100s	1	0
	P429	Constant-speed torque limiting time	0~999.9s	0.1	Changing
	P430	Width of arrival of frequency in hysteric loop	0.00~2.00	0.1	0.50
	P431	Jump frequency 1	$0.00 \sim$ maximum frequency	0.1	0
	P432	Jump frequency 2	0.00~maximum frequency	0.1	0
	P433	Jump frequency hysteresis loop width	0.00~2.00	0.1	0.50
	P434	UP/DOWN frequency step	$0 \sim 10.00 \mathrm{~Hz}$	0.1	0.1
	P435	UP/DOWN frequency memory options	$\begin{aligned} & \text { 0: Memory } \\ & \text { 1: No memory } \end{aligned}$	1	0
PLC operation	P500	PLC memory mode	$0 \sim 1$	1	0

	P501	PLC starting mode	0~1	1	0
	P502	PLC running mode	0 : PLC stops after running for one cycle 2: PLC cycle running 3: PLC stop mode, cycle running mode 4: PLC operates at the last frequency after running for one cycle	1	0
	P503	Multi-speed 1	0.00~maximum frequency	0.1	20.0
	P504	Multi-speed 2	0.00~maximum frequency	0.1	10.0
	P505	Multi-speed 3	0.00~maximum frequency	0.1	20.0
	P506	Multi-speed 4	0.00~maximum frequency	0.1	25.0
	P507	Multi-speed 5	0.00~maximum frequency	0.1	30.0
	P508	Multi-speed 6	$0.00 \sim$ maximum frequency	0.1	35.0
	P509	Multi-speed 7	0.00~maximum frequency	0.1	40.0
	P510	Multi-speed 8	$0.00 \sim$ maximum frequency	0.1	45.0
	P511	Multi-speed 9	0.00~maximum frequency	0.1	50.0
	P512	Multi-speed 10	0.00~maximum frequency	0.1	10.0
	P513	Multi-speed 11	$0.00 \sim$ maximum frequency	0.1	10.0
	P514	Multi-speed 12	0.00~maximum frequency	0.1	10.0
	P515	Multi-speed 13	$0.00 \sim$ maximum frequency	0.1	10.0
	P516	Multi-speed 14	0.00~maximum frequency	0.1	10.0
	P517	Multi-speed 15	0.00~maximum frequency	0.1	10.0
	P518	PLC operation time 1	0~9999s	1 s	100
	P519	PLC operation time 2	0~9999s	1 s	100
	P520	PLC operation time 3	0~9999s	1 S	100
	P521	PLC operation time 4	0~9999s	1 S	100
	P522	PLC operation time 5	0~9999s	1 s	0
	P523	PLC operation time 6	0~9999s	1 s	0
	P524	PLC operation time 7	0~9999s	15	0
	P525	PLC operation time 8	0~9999s	1 s	0
	P526	PLC operation time 9	0~9999s	1 S	0
	P527	PLC operation time 10	0~9999s	1 S	0
	P528	PLC operation time 11	0~9999s	1 S	0
	P529	PLC operation time 12	0~9999s	1 S	0
	P530	PLC operation time 13	0~9999s	1 S	0
	P531	PLC operation time 14	0~9999s	1 S	0
	P532	PLC operation time 15	0~9999s	1 S	0
	P533	PLC operation direction	0~9999s	1	0
PID operation	P600	PID starting mode	0: PID disable 1: PID start 2: PID start by external terminal	1	0
	P601	PID operation mode selection	0 : Negative feedback mode 1: Positive feedback mode	1	0
	P602	PID action set point	$\begin{aligned} & \text { 0: figure mode (P604) } \\ & \text { 1: AVI (0-10V) } \\ & \text { 2: AVI (}(0-20 \mathrm{~mA}) \end{aligned}$	1	0
	P603	PID feedback value selection	$\begin{aligned} & \text { 0: AVI }(0-10 \mathrm{~V}) \\ & \text { 1: AVI }(0-20 \mathrm{~mA}) \\ & \text { 2: Reserved } \\ & \text { 3: Reserved } \end{aligned}$	1	0
	P604	PID figure target value setting	0.0~100.0\%	0.1\%	50\%
	P605	PID upper limit alarm value	0~100.0\%	1\%	100\%
	P606	PID lower limit alarm value	0~100.0\%	1\%	0\%
	P607	PID proportional band	0.0~200.0\%	0.1\%	100\%
	P608	PID integral time	0.0~200.0s.0 means closed	0.1s	0.3s
	P609	PID differential time	$0.00 .0 \sim 20.005 .0$ means closed	0.1s	0.0
	P610	PID action step-length	$0.00 \sim 1.00 \mathrm{~Hz}$	0.1	0.5 Hz
	P611	PID standby frequency	$0.00 \sim 120.0 \mathrm{~Hz}(0.00 \mathrm{~Hz}) 0.00 \mathrm{~Hz}$ means sleep function is closed	0.1	0.0Hz
	P612	PID standby duration	0~200s	15	10s
	P613	PID wake-up value	0~100\%	1\%	0
	P614	PID corresponding value of display	0~9999	1	9999
	P615	PID digit of display	1~5	1	4
	P616	PID decimal digits of display	$0 \sim 4$	1	2
	P617	PID upper limit frequency	0~max. frequency	0.1	48.00
	P618	PID lower limit frequency	0~max. frequency	0.1	20.00
	P619	PID working mode	$0: A l w a y s$ work (PID function open) 1: When feedback reaches upper limit (P605), it will work at min-frequency. When feedback reaches lower limit (P606), PID will begin to work.	1	0
RS-485 communication	P700	Communication speed	0:4800 bps		1

			1: 9600 bps 2: 19200 bps 3: 38400 bps		
	P701	Communication mode	0:8N1 FOR ASC 1:8E1 FPR ASC 2: 801 FOR ASC 3: 8N1 FOR RTU 4: 8E1 FOR RTU 5: 801 FOR RTU		0
	P702	Communication address	0~240	1	0
Advanced application	P800	Advanced application parameter lock	0: Locked 1:Unlocked	1	1
	P801	System $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ setting	$0 \sim 50 \mathrm{~Hz}$ 1~60Hz	1	1
	P802	Constant torque or variable torque selection	0 :Constant torque 1: Variable torque	1	1
	P803	Over-voltage protection setting	Changing	0.1	Changing
	P804	Under-voltage protection setting	Changing	0.1	Changing
	P805	Over-temperature protection setting	$40 \sim 120^{\circ} \mathrm{C}$	0.1	85/95 ${ }^{\circ} \mathrm{C}$
	P806	Current display filter time	0~10.0	0.1	2.0
	P807	$0-10 \mathrm{~V}$ analogue output low end calibration coefAlient	0~9999	1	-
	P808	$0-10 \mathrm{~V}$ analogue output high end calibration coefAlient	0~9999	1	-
	P809	$0-20 \mathrm{~mA}$ analogue output low end calibration coefAlient	0~9999	1	-
	P810	$0-20 \mathrm{~mA}$ analogue output high end calibration coefAlient	0~9999	1	-
	P811	Compensation frequency point for dead time	0.00~maximum frequency	0.01	0.00
	P812	UP/DOWN frequency memory options	0:memory 1: No memory	1	1

Table 2
Troubleshooting

Operation panel indication	Name	Possible fault reason	Corrective action
0C0/UC0	Over current during stop	1: Inverter fault	Please contact sales representative
0C1/UC1	Over current during acceleration	1: Acceleration time is too short 2 : V/F curve is not set correctly 3: Motor or motor wire have short circuit to the ground 4: The torque boost is set too fast 5: The input voltage is too low 6: Directly start up the running motor 7: The inverter setting is not correct 9: The inverter fails	1: Increase acceleration time 2: Correctly set V/F curve 3: Check the insulation of motor and motor wire 4: Reduce the value of torque boost 5: Check input voltage 6: Check the load 7: Set tracing startup 8:Enlarge capacity of inverter 9: Sent for repairing
0C2/UC2	Over current during deceleration	1: Decelerate time is too short 2: Inverter capacity is inappropriately set 3 : Whether there is any disturbing	1: Increase deceleration time 2: Enlarge inverter capacity 3: Solve disturbing resource
0C3/UC3	Over current during constant speed	1: The insulation of motor and motor wire is not good 2: Load fluctuation 3: Fluctuation of input voltage and the voltage is low 4: Inverter capacity is inappropriately set 5: Whether there is large power motor starting up and leads the input goes down 6: Whether there is a disturbing resource to disturb inverter	1: Check the insulation of motor and motor wire 2: Check load situation and mechanical lubrication 3: Check input voltage 4: Enlarge the capacity of inverter 5: Increase capacity of transformer 6 : Solve disturbing resource
OU0	Over voltage during stop	1: The deceleration time is short 2: Inverter capacity incorrectly set 3 : Disturbing	1: Check the power supply voltage 2 : sent for repairing
$20 \cup 1$	Over voltage during acceleration	1: Abnormal power supply 2:Peripheral circuity is incorrectly set (switch control on or off, etc.) 3: Inverter fault	1: Check the power supply voltage 2: Do not use power supply switch to control the inverter on or off 3: Sent for repairing
OU2	Over voltage during deceleration	1: Power supply voltage abnormal 2: Energy feedback load 3: Braking resistor incorrectly set	1: Check the power supply voltage 2: Install braking unit and resistance 3: Affirm resistance setting again
OU3	Over voltage during constant speed	1: Decelerate time is too short 2: Power supply voltage abnormal 3: Over load 4: Braking resistor incorrectly set 5: Braking parameter is incorrectly set	1:Increase deceleration time 2: Check the power supply voltage 3: Check braking unit and resistance 4: Set braking resistor over again 5:Correctly set parameter, e.g. braking tube voltage, etc
LU0	Under voltage during stop	1: Power supply voltage abnormal 2: Phase missing	1:Check the power supply voltage 2: Check power supply and switch whether there is phase missing
LU1	Under voltage during acceleration	1: Power supply voltage abnormal 2: Phase missing 3:There is large load power start up in the input	2:Check whether peripheral setting bad connection leads phase missing 3:Please use independent power supply
LU2	Under voltage during deceleration		
LU3	Under voltage during constant speed		
OLO during stop	Inverter overload	1: Overload 2: Acceleration time is too short 3: Torque boost is too fast 4: V/F curve incorrectly set 5: Under voltage of input 6: Before motor stops, inverter starts up 7: Fluctuation or blocking in loading	1:Reduce the load weight or replace larger capacity inverter 2: Increase acceleration time 3:Reduce torque boost rate 4: Set V/F curve over again : Check input voltage, increase inverter capacity 6:Adopt tracing startup mode 7: Check load condition
OL1during acceleration			
OL2 during deceleration			
OL3 during constant speed			

ОT0 during stop	Motor overload	1: The motor for use under overload 2: Acceleration time is too short 3:Motor protection setting is too small 4:V/F curve is not incorrectly set 5: Torque boost is too fast 6: Bad motor insulation 7: Motor setting is too small	1:Reduce the load weight 2: Increase acceleration time 3:Increase protection setting 4:Correctly set V/F curve 5:Reduce torque boost rate 6:Check motor insulation and replace motor 7:Use larger inverter or motor
OT1 during acceleration			
OT2 during deceleration			
OT3 during constant speed			
ES	Emergency stop	1: Inverter is in emergency stop condition	1:After release Emergency stop, start up as regular procedure
CO	Communication error	1: Communication line connection has problem 2: Communication parameter is incorrectly set 3: Transmission format is wrong	1: Perform wiring of the RS-485 terminals properly 2: Set parameter over again 3: Check data transmission format
20	4-20mAwire broken	Terminal is loose; signal input line is bad connection	1: Perform wiring of the 4-20mA terminals properly
Pr	Parameter write error	Parameter setting is wrong	After stopping operation, make parameter setting
Err	Wrong parameter group	The parameter does not exist or factory setting parameter	Quit this parameter

Table 3
OPERATION PANEL
Key function description

Table 5

*The above display items can be switched and read by short pressing the $\frac{\text { ENTER }}{\text { DISP }}$ key on the main menu.

Operating panel operation instruction
(1) Parameter setting <taking modifying P104 reverse Valid setup as example>

Program	Key name	Display	Description
		STOP FWD	
1	Power on	F00.0	The inverter is standing by.
2	$\text { Press } \mathrm{PRG}$	STOP FWZ P000	To enter the parameter setup state, and the first letter blinks (mean modifiable item)
3	Press \triangle for four times	$\begin{aligned} & \text { STOP } \\ & \hline \hline \text { PWDL } \\ & \hline \text { P004 } \end{aligned}$	The digit is modified into " 4 " from " 0 "
4	Quickly press ENTER 2 times (quick press means shift	$\begin{aligned} & \text { STOP FWL } \\ & \hline \hline \text { P004 } \end{aligned}$	Shift leftward for two digits and the third digit will clicker
5	Press \square for once	STOP PWV	The digit is modified into " 1 " from „0"
6	Press and hold $\frac{\text { ENTER }}{\text { DISP }}$	$\begin{aligned} & \text { STOP } \text { FWL } \\ & \hline \hline 0001 \end{aligned}$	Enter the parameter setting interface
7		STOP FWD P000	Modified „1" into „0"

8	Press and hold	STOP FWZ	To confirm that the value „P104" has been modified
9	$\text { Press } \quad \text { PRG }$	STOP FWZ F00.0	Return back to the initial display

Table 6
Note:

1. Pressing PRG an interrupt the modification and return back to the main display interface.
2. When a modification is confirmed, An Err may be displayed to show the parameter modification is failed.
(2) Status display and inquiry

Parameter set: the frequency for the startup and shutdown ($\mathrm{P} 102=0$) of the frequency converter controlled by the manipulator is given by the potentiometer of the manipulator (P101=3).

Step	Key name	Display	Description
1	Power on	STOP FWD F00.0	Frequency setting display state
2	Rotate	STOP FWD F05.0	Frequency setting 5.0Hz
3	Press \square	RUN FWD	Forward running of the frequency is turned on
4	$\text { Press } \frac{\text { ENTER }}{\text { DISP }}$	RUN FWL F05.0	Switch to the actual running frequency display
5	Rotate	RUN FWD H15.0	Modify the set frequency, and the actual running frequency is modified into 15 Hz from 5 Hz
6	$\text { Press } \frac{\text { ENTER }}{} \text { DISP on once }$	RUN FWD	Switch to the current display when the current output is OA
7	Press $\frac{\text { ENTER }}{\text { DISP }}$ for once	$\begin{array}{\|c\|} \hline \text { RUN } \\ \hline \hline \text { Frd } \\ \hline \end{array}$	Switch to the setting interface (press to switch the rotating direction)
8	Press RUN for once	RUN FWZ P000	Switch to the parameter setting status
9	Press \triangle for once	$\begin{aligned} & \hline \text { RUN } \quad \text { FWI } \\ & \hline \hline \text { P006 } \\ & \hline \end{aligned}$	Select parameter code P006 to be modified
10	$\text { Long press } \frac{\text { ENTER }}{\text { DISP }}$	RUN 022.8	P006 content: the current temperature of the frequency converter is $22.8^{\circ} \mathrm{C}$
11	$\text { Press } \operatorname{PRG} \text { for twice }$	$\begin{array}{\|l\|} \hline \text { RUN } \\ \hline \hline \text { FWWI } \\ \hline \end{array}$	Return back to the main display, the set frequency is 15 Hz
12	$\text { Press } \frac{\text { STOP }}{\text { RESET }}$	RUN FWD F15.0	During the frequency converter is decelerating before stop, the key will flicker and then the and keys will turn on, and the set frequency displayed is 15 Hz

Table 7
 can be modified by P000 setting as per the practical requirement, and meanwhile the related content can be monitored by the user through P001-P018.

VT 1000 series frequency inverter

Model code	Input voltage	Output power (9kW)	Drive Capacity (KVA)	Output current (A)	Overload Capacity (60s((A)	Applicable motor (kW)
VT1000S-0R4G	1P/220V	0.4	1	2.5	3.75	0.4
VT1000S-0R7G	1P/220V	0.75	2	5	7.5	0.75
VT1000S-1R5G	1P/220V	1.5	2.8	7	10.5	1.5
VT1000S-2R2G	1P/220V	2.2	4.5	11	16.5	2.2
VT1000T-0R4G	3P/380V	0.4	2	1.5	2.25	0.4
VT1000T-OR7G	3P/380V	0.75	2.2	2.7	4.05	0.75
VT1000T-1R5G	3P/380V	1.5	3.2	4	6	1.5
VT1000T-2R2G	3P/380V	2.2	4	5	7.5	2.2
VT1000T-3R7G	3P/380V	3.7	6.8	8.6	12.9	3.7

VT1000T-5R5G	3P/380V	5.5	10	12.5	18.75	
VT1000T-7R5G	$3 P / 380 \mathrm{~V}$	7.5	11.2	17.5	26.25	
VT1000T-11G	$3 P / 380 \mathrm{~V}$	11.0	17	24	36	

Table 8

Transport and storage

All products are packed by the producer for normal transporting conditions. Make sure that the controller does not put the rotary switch downwards. Until final installation store products in a dry place with humidity not more than $70 \%\left(20^{\circ} \mathrm{C}\right)$, average ambient temperature must be $5-40^{\circ} \mathrm{C}$. The storage place must be covered from water and dirt. Avoid longterm storing. It is not recommended to store products for more than 1 (one) year.

Maintenance

The frequency inverter needs no specific maintenance. The housing may be cleaned using a moist cloth. In case of heavy filthiness, clean with non-aggressive cleaners. Pay attention that no fluids get into the frequency inverter. Reconnect mains only after the frequency inverter is completely dry. All electrical connections should be carried out after the supply voltage break by a qualified and authorized electrician according to national and local regulations.

Warranty

1. Manufacture declare 2 years warranty term from the date of manufacturers invoice. Warranty is applied in case if all requirements of transporting, storing, installation and electrical connection are fulfilled.
2. In case of damaged or faulty product during warranty term customer must inform producer in 5 days and deliver product to manufacture as soon as possible at customer's costs. In other case warranty is not valid.
3. Manufacture is not responsible for damages which occur during transportation or installation.
